Mendeteksi Salak BerLarva dan Tidak BerLarva Menggunakan Metode Convolutional Neural Network

Main Article Content

Jati Nugroho
Supatman

Abstract

Salacca fruit is one of the cultivars of the salak pondoh (the young fruits with sweet taste), which has become a leading commodity in Sleman, the Special Region of Yogyakarta Province. The salak madu (honey salacca fruit ~Eng.) became known when it was identified for the first time in Sempu Sub-village (Baterante), Wonokerto Village, Turi District, Sleman Regency. The most prominent feature of this salak madu is the leaves are shorter when compared to other types of salak pondoh. The color of the fruit's skin is blackish-brown when it is young, and it gradually becomes shiny brown after getting old. The arrangement of the scales forms a line pattern. This research was initiated because some people were sometimes deceived by the salak madu that looked good even though it had larvae inside. Therefore, the researcher was willing to create a system to detect which salacca fruits had larvae inside and which did not, using the Convolutional Neural Network (CNN) method. Detecting the salacca fruits with larvae and with no larvae required an image of the salacca fruits with larvae and with no larvae; after that, the image that had been obtained would go through a training process to detect the salacca fruits, whether they have larvae or no larvae; and after that, the image would be tested for the accuracy. The test result obtained by this System was 80%.

Article Details

Section
Articles

References

[1] Ahmad, M. A. SISTEM DETEKSI DINI KANKER PAYUDARA PADA CITRA MAMMOGRAM BERBASIS CONVOLUTIONAL NEURAL NETWORK,2019.
[2] Mubarok, H. IDENTIFIKASI EKSPRESI WAJAH BERBASIS CITRA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN),2019.
[3] Anggraini, W. DEEP LEARNING UNTUK DETEKSI WAJAH YANG BERHIJAB MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) DENGAN TENSORFLOW,2020.
[4] Kelvin. SISTEM KLASIFIKASI SAMPAH BERBASIS CONVOLUTIONAL NEURAL NETWORK,2019.
[5] Marbun, J. T. KLASIFIKASI STROKE MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,2017.
[6] Rohim, A. , Sari, Y. A. , Tibyani. CONVOLUTION NEURAL NETWORK(CNN) UNTUK PENGKLASIFIKASIAN CITRA MAKANAN TRADISIONAL,2019.
[7] Annisaurohmah, Herawati, W, Widodo, P. (2014). KEANEKARAGAMAN KULTIVURAL SALAK PONDOH DIBANJARNEGARA CULTIVURAL DIVERSITY OF SALAK PONDOH IN BANARNEGARA,Pasundan Food Technology Journal, Volume 6, No.2,2019.
[8] Maulana, F. F. , Rochmawati, N. KLASIFIKASI CITRA BUAH MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,2019.
[9] Eldianto, M. N. D. IMPLEMENTASI DEEP LEARNING PADA SISTEM KLASIFIKASI PENYAKIT PARU BERDASARKAN FOTO RONTGEN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK(CNN),2019.
[10] Utami, C. R. (2015). KARAKTERISTIK MINUMAN PROBIOTIK FERMENTASI Lactobacillus casei DARI SARI BUAH SALAK,JINACS: Volume 01 Nomor 02, 2019.
[11] Peryanto, A. , Yudhana, A. , Umar, R. (2018). KLASIFIKASI CITRA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DAN K FOLD CROSS VALIDATION, Journal of Applied Informatics and Computing (JAIC) Vol.4, No.1, Juli 2020, pp. 45~51 e-ISSN: 2548-6861.
[12] Mustalidah, H S.Si.,M.Kom , Suwarsito S.Pi., M.Si. (2020). DASAR-DASAR METODOLOGI PENELITIAN,UM Purwokerto Press,2020.
[13] Sahetapy, B. ,Ulutuppy, M. R,Naibu, L. (2019). IDENTIFIKASI LALALT BUAH (Bactrocera spp.)ASAL TANAMAN CABAI(Capsicum annuum L.) DAN BELIMBING (Averrhoa carambola L.) DI KECAMATAN SALAHUTU KABUPATEN MALUKU TENGAH, Jurnal Agrikultura 2019, 30 (2): 63-74 ISSN 0853-2885.