Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN)

Main Article Content

Yoga Purna Irawan
Indah Susilawati


Aglaonema or popularly known in Indonesia as "Sri Rejeki" is a leaf ornamental plant fancied by many people. This plant has unique leaves with beautiful and diverse shapes, colors, and patterns. Various ways can be used to identify this plant; one of which is by using an image processing technique in which the process is carried out through feature extraction or classification process. A method/algorithm to classify Aglaonema image is the Convolutional Neural Network (CNN). CNN is an algorithm of Deep Learning and is the development of a Multi Layer Perceptron (MLP). This study used the image of 5 types of Aglaonema leaves with 100 images of each type. The CNN model used in this study was the Alexnet model. Based on 4 experiments using the optimizer and different configurations of epoch values, the highest training validation accuracy value was 98.00%. The system also can classify Aglaonema images well with an accuracy success rate of 96% of 50 images tested.

Article Details



[1] S. Roza, “Efisiensi Faktor Produksi Sri Rejeki (Aglaonema commutatum) di Kota Pekanbaru.” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2011.
[2] A. Gusadha, “Identifikasi Jenis Tanaman Aglonema Menggunakan Probalistik Neural Network,” 2011.
[3] I. Putra, “Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101.” Institut Teknologi Sepuluh Nopember, 2016.
[4] L. Deng and D. Yu, “Deep learning: methods and applications,” Found. trends signal Process., vol. 7, no. 3–4, pp. 197–387, 2014.
[5] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, 2015.
[6] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural networks for large-scale remote-sensing image classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 645–657, 2016.
[7] S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. Dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
[8] A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra dengan Teknologi Deep Learning Berbasing Metode Convolutional Neural Network,” J. Ilm. Tek. Inform., vol. 8, no. 2, pp. 138–147, 2019.
[9] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020.
[10] F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. 1, no. 02, 2019.